
Interactive Machine Learning in Data Exploitation

Reid Porter, James Theiler, Don Hush

Intelligence and Space Research Division

Los Alamos National Lab, USA

Abstract

The goal of interactive machine learning is to help scientists and engineers exploit more of their

specialized data in less time. Interactive machine learning focuses on methods that empower domain

experts to control and direct machine learning tools from within the deployed environment, whereas

traditional machine learning does this in the development environment. This difference allows

interactive machine learning systems to be more responsive, more accurate and cheaper to develop and

maintain. This article provides a basic introduction to the main components and tries to untangle the

many ideas that must be combined to produce practical interactive learning systems. It also describes

recent developments in machine learning that have significantly advanced the theoretical and practical

foundations for the next generation of interactive tools.

Introduction

In a variety of science and engineering applications the quantity of data being collected far exceeds our

capacity to digest and interpret that data. Machine learning can help in these applications by providing

tools that clean up, filter and identify the most relevant subsets of data. The broad applicability of these

tools is a strength, but because they lack domain-specific input, they are not as accurate or as robust as

they could be, and domain experts do not fully trust them.

There are two main ways to make machine learning tools more accurate and useful in specific

applications. The most common approach employs computer scientists, or knowledge engineers who

have a sophisticated understanding of both the application and the tools, to translate and encode what

they learn from domain experts. This is a time-consuming and expensive process, but the importance of

science and engineering datasets often justifies the up-front investment.

Interactive machine learning provides a second way to tailor machine learning to specific applications.

The central idea is to engage end-users directly and to provide data visualization and annotation tools

that enable experts to customize the tools for their application. This approach is particularly attractive in

applications where objectives are harder to define up-front, scientific hypotheses are subject to change,

or cost /time constraints mean solutions that are good enough today are preferred over solutions that

will be optimal tomorrow.

Interactive machine learning ideas and techniques have been pursued in a variety of forms since

machine learning began. These efforts come from several research communities including analysis,

visualization, and human-computer interaction and deal with a number of different technical issues

including learning, interfaces, programming and interaction. The first objective of this article is to

untangle some of these components to better understand where the state-of-the-art is, and where it is

going. Towards this goal, this article is divided into 3 parts corresponding to the axes of a 3 dimensional

design space for interactive machine learning systems (see Fig. 1). The second objective of this article is

to introduce readers to new developments along these axes, and describe how they enable new kinds of

interactive machine learning tools.

Interactive Machine Learning Design Space: Machine learning tools are used within end-user

environments in a number of different ways. In traditional machine learning applications (the origin in

Fig. 1), tasks are unreduced and humans and machines work independently on different tasks. The

computer is responsible for the automated tasks, and the user is responsible for different, manual tasks.

In interactive machine learning, humans and computers begin to work together on the same task. For

example, the most common decomposition divides the task into two parts and the human and the

computer each do a part. We call this aspect of interactive machine learning ‘task decompositions’

(Part I).

One of the unique features of machine learning is training: the ability to optimize tool performance

using examples of desired results. In traditional machine learning applications, the algorithm designer

uses a fixed set of labels, supplied up-front by the domain experts, to train machine learning tools

before they are deployed on the larger dataset or data archive. This approach (Batch, Labels in Fig. 1)

and has proven successful both in theory (rigorous proofs) and in practice (commercial applications). But

recent developments in machine learning show that there is an opportunity to enhance the generality,

efficiency and accuracy of the training process. We have moved from label learning to structure

learning, formalized in terms of clusters, constraints, matches and other generalizations of standard

Figure 1: Traditional machine learning has developed important methods that lie at the origin of this design

space. Interactive machine learning builds upon advances in the training vocabulary and the training dialog to

produce more sophisticated and dynamic task decompositions between humans and machines.

labels. We call these aspects of training the ‘training vocabulary’ (Part II). We have also moved from up-

front learning to on-line, incremental and active learning paradigms that formalize an increasingly

interactive dialog between users and their data. We call these aspects of training the ‘training dialog’

(Part III).

Interactive machine learning is not for everyone. Consumer electronics are driving large numbers of

applications where the end-users are consumers and must be enticed into providing feedback and

training data for machine learning systems. The priority in these applications is to minimize the

interaction [1]. This makes optimizing tools more difficult, but these applications are not critical, and the

mistakes made by these tools do not have significant consequences. However, science, engineering,

health and defense datasets are specialized and applications are often critical. Domain experts in these

applications are also highly motivated and willing to interact with data, and tools, in a much more

sophisticated way than current systems allow. These are the applications where interactive machine

learning can have the most impact, and these are the applications that will drive interactive machine

learning tool development.

Part I – Task Decompositions

Machine Learning Predicts and Humans do the Rest

One of the most common task decompositions involves computers in a first stage identifying subsets of

data that are relevant to humans in a second stage. This is a common decomposition because

computers can do what they do best – analyze large volumes of data - and the users can do what they

do best – analyze a small subset of data in more detail. In this section we describe a number of different

tasks where this decomposition is common. Often this decomposition comes about because the task is

just too complex for computers to get it right, and so humans are required to validate, clean-up and

correct the results.

Content Detectors: A very important task in machine learning is to identify relevant subsets of data. We

use the term relevant very broadly and it could represent anything from faces in imagery to trends in the

stock market. This task is formulated as a machine learning problem by associating a variable

 with each data sample that indicates that the sample is relevant (+1) or not (-1). The

challenge is to find a function that predicts and makes a small number of mistakes:

 () [()] (1)

The (Bayes) optimal detector is the function (from the space of all possible functions,) that

minimizes Eq. 1:

 () (2)

This detector can also be interpreted as a hypothesis test between a model of relevant data ()

verse a model non-relevant data (). In this formulation, the solution to Eq. 2 can be expressed in

terms of a likelihood ratio test:

 ()
 ()

 ()

Mistakes come in two flavors, and in interactive applications, these are often presented as precision--the

probability that data predicted +1 is actually relevant, and the recall--the probability that all the relevant

data was identified. A detector with precision equal to 1 would have no false alarms (FA). A detector

with recall equal to 1 would have no missed detections (). Of course in practice, due to any

number of factors (including noise, background variability and approximations made by the machine

learning methods) detectors will almost certainly have non-zero number of false alarms and missed

detections.

In the interactive setting it is common to cue (or present) the user with the positive predictions so that

they can perform triage and/or additional analysis on the reduced data volume. The user would like to

process as much relevant data as possible, but their time and effort is limited, and so a useful variation

of the standard design criteria (1) is to limit the number of false alarms. For example in fraud detection

the classification system often has no utility unless the false alarm rate can be kept below a fixed level.

This is called a Neyman-Pearson, or constant false alarm rate, design criteria [2]:

Anomaly Detection: In some applications the relevant content of interest is not known in advance or it

is difficult to define formally, but users still need help exploring large datasets. In this case machine

learning methods have been developed which use more general models of relevance and non-relevance.

Anomalies are defined as subsets of the data with low likelihood. Anomaly detectors can be designed by

finding functions with the following form:

 ()
 ()

 ()

where () is the probability density function (i.e. likelihood) for data sample and () is the uniform

density [3]. Various alternatives to () have been suggested and may provide more informative

models of relevance such as a product distribution of the data marginals [4, 5]:

 ()
∏ ()

 ()

Anomalous Change Detection: This model of relevance has particular utility when the factorization is

appropriate to the application. One application where this idea has been developed in detail is change

detection, where data typically falls into two (or more) sets. For example, imagine we are looking for

(anomalous) change between two spectral signatures taken at two different points in time

[] and []. A suitable detector would be [6]:

 ()
 () (

)

 ()

Rare Category Detection: A variation of the anomaly detection problem is rare category detection

(RCD). It is motivated by the intuition that in addition to having low-probability, content of interest will

form small clusters (or categories). This clustering assumption implies we are often more interested in

small groups of anomalies than we are in single isolated anomalies. This has also led to the concept of

cluster (or category) discovery: users only need to see one example from each category and the

objective is to maximize the number of categories shown to the user while minimizing the number of

examples shown. This is in contrast to traditional anomaly detection, where the objective is to identify

all anomalies as accurately as possible. This is illustrated in Fig. 2.

Theory work has called the RCD problem “multiple output identification” and has characterized the

separable case [7]. A number of metrics for quantifying the RCD assumptions in more practical settings

have been suggested including the maximum change in local density [8], quantities associated with

boundary points [9] as well as a number of quantities derived from hierarchical mean shift clustering

[10]. In previous work we suggested the detector:

 ()
 ()

 ()

Where () is a smoothed (or smoother) density estimate of the data compared to () [11]. In

practical settings, once a user has discovered a set of exemplars, they often want to find additional

examples of particular categories. This second (exploitation) stage has been called rare category

characterization [12].

Figure 2: On the left is an example of a synthetic rare category detection problem. Nine rare

categories (circled) are embedded within a larger background category. The rare category detection

objective differs from anomaly detection because the detector is only rewarded for one example from

each category. Detectors tuned to this objective (ratio) outperform anomaly detection which identifies

isolated low probability samples (all samples outside of the circle in the left panel).

Anomaly detector

Rare categories

Humans Sketch and Machine Learning does the Rest

The second task decomposition is the complement of the first and this time, the human goes first. It has

proven successful in several applications where the task is typically easy for a human to partially (or

approximately) complete, but to fully complete the task would be tedious, expensive and error prone.

The decomposition benefits both parties: the human does less work since they only have to provide a

partial solution. The computer can obtain higher accuracy compared to automated methods since its

computation can be focused on the relevant task. This decomposition is seen in a number of

applications which we briefly describe.

Labeling data: A number of data exploitation tasks can be reduced to semi-automatic labeling of data. A

human provides labels (e.g. +1/-1) for a subset of the data, and the computer predicts labels for the

unlabeled data. In this section we focus on transductive learning [13], which means we are given the

unlabeled data at the same time as the labeled data, and the labels are not generalized beyond this

fixed dataset. In theory (and practice) there is often not a clear distinction between transductive and the

more common inductive methods, which we call learning by example in the next section [14]. In

interactive settings, however, this distinction is often very clear. In the transductive case, users are

required to interact with each new dataset to generate new labels. In the inductive case, the interaction

can be generalized to future datasets, so that it is possible (in principle) for the user to stop labeling

after the first dataset. A number of popular techniques in semi-supervised learning are transductive [15]

and there are a number of applications where transductive methods are preferred.

For example, imagine a quality control application (see Fig. 3). There is too much variability in the

production processes from one day to the next to design an automated inspector. But within each day,

there is enough consistency between parts for the job to become repetitive and tedious. In terms of

interactive machine learning there are several open questions with respect to transductive methods. For

example, how should users balance their time between providing labels up-front, validating and

correcting the inevitable mistakes that the learning system will make? This depends on a number of

application specific factors such as the relative cost of labeling data, verse validating results, verse

correcting results. A simple illustration of this tradeoff is illustrated on the right in Fig. 3.

Clustering data: A large part of understanding data is being able to group subsets of the data into

conceptual clusters. Humans are very good at identifying trends and important features of data in one,

two to three dimensions, but they need help dealing with the many hundreds of dimensions, and

multiple data types, that are often associated with real-world data. Organizing and visualizing clusters is

key to a large number of interactive data analysis tools that are motivated from a visual analytics

perspective [16]. These tools enable users to efficiently browse and explore large volume datasets with

intuitive graphical user interfaces [17].

Interactive machine learning methods can also help in these applications by optimizing the clustering

strategy based on a small amount of user input. The typical user interaction is formalized as equivalence

constraints: pairs (or sets) of data that belong to the same cluster and/or pairs (or sets) that belong to

different clusters [18]. These constraints can be obtained from the user through labeling interfaces, or,

through drag-and-drop type interfaces where user’s visualizing clusters are able to drag subsets of data

closer to other subsets [19].

Solution methods for constrained clustering have been developed for both transductive and inductive

settings. In the transductive setting the constraints are assumed to be specific to a cluster and there is

no attempt to generalize the constraints to other clusters. When a new clustering problem is presented,

the user provides new constraints. One of the first transductive methods extended K-Means [20]. We

discuss inductive versions of this problem in the next section with respect to training by example.

Image segmentation: Similar to clustering, the goal of image segmentation is to partition data (in this

case, pixels) into a number of disjoint contiguous sets. Unlike the general clustering problem, image

segmentation typically deals with low-dimensional data with strong local dependencies. But with these

Figure 3: Left) A user needs to inspect 12 solar cells from the production line and identify which cells pass

quality control. The user labels 4 cells (left) and then machine learning predicts labels for the remaining 8

(middle). Validating the results, the user identifies two samples that must be corrected (right). Right) Results on

a synthetic problem showing the relationship between up-front effort and the total effort required when the

cost of validation is small compared to the cost of labeling and correcting.

Step 1 Step 2 Step 3

(often significant) differences in mind, interactive image segmentation can be considered one of the

most successful applications of constrained clustering.

User input is typically generated by paint program like tools, producing paintbrush strokes shown in Fig.

4, which identify pixels that should belong to the same segment (or cluster). Different brush strokes are

assumed to belong to different segments, and this generates non-equivalence constraints. Interactive

image segmentation is an important tool in bio-medical imaging for the accurate delineation of complex

3-dimensional objects such as organs and bones [21], identifying synaptic pathways [22], as well as

identifying, counting and characterizing different cell types [23]. Similar applications are also found in

material science [24], geology, manufacturing and food inspection.

A large number of techniques have been developed for interactive image segmentation and many are

inspired by transductive semi-supervised clustering techniques [25]. The strong local dependencies also

mean that many methods are formulated in terms of Graphical Models, or energy minimization on a

graph. Graphical models are briefly introduced in Fig. 4. Couprie et. al. show how graph-cuts [26],

random walkers [27], watershed [28], geodesic [29] and many other interactive image segmentation

systems can be understood as different parameter choices of a general energy function [30]. The

importance of interaction in segmentation problems has also started to motivate frameworks for

evaluating performance that don’t require expensive human subject testing [31].

Figure 4: A graphical model is a graph 𝐺 (𝒱 𝒞) defined by a set of vertices 𝒱 and cliques 𝒞, a set of

random variables 𝑌, and a real-valued energy function 𝐸𝐺(𝑌). Each vertex 𝑣 𝒱 indexes a random

variable 𝑦𝑣 𝑌. In image segmentation the vertices lie on a lattice corresponding to the image plane,

and each variable indicates whether that location is part of the background (white) or the foreground

(black). Each clique 𝑐 𝐶 indexes a subset of the random variables, 𝓎𝑐 𝑦𝑖 𝑦𝑗 𝑦𝑘 . In the example,

we illustrate pairwise cliques and the energy function has the form, 𝐸𝐺(𝑌) f𝑐(𝓎𝑐)𝑐 𝒞 , where feature

functions, f𝑐, are chosen for the application. In image segmentation, pairwise feature functions assign

low energy to smooth variable assignments based on the magnitude of the image gradient. This means,

that the optimal assignment, 𝑌 𝑎𝑟𝑔𝑚𝑖𝑛𝑌 𝐸𝐺(𝑌), produces a spatially contiguous labeling that is

consistent with strong edges (as shown in the hypothetical result).

Part II - The Training Vocabulary

So far we have described decompositions where humans and computers work together on tasks with

relatively static job assignments. In this section we begin to describe the interactions between humans

and machines during training. Training can be used prior to deployment to improve the computer’s role

in the decompositions described in Part I. It can also be used in the deployed environment to make

interactive systems more dynamic: systems can optimize their performance based on data and

interactions, and thereby improve over time. The potentially dynamic nature of the training interaction

is described in Part III of this article. In this section we focus on the vocabulary used during training and

describe the two main categories of interaction shown in Fig. 5.

Learning from Examples

Labeling Data: In Part I we introduced content detectors, and then briefly described their application to

labeling data in a transductive semi-supervised setting. In this section we describe the more common

setting, which is inductive supervised learning. Training assumes a user provides labels for a randomly

selected subset of the data. The training set includes (data, label) pairs:

 (() ()) (() ()) (() ())

from which we can define a training set (or empirical) error:

Learning from Examples: This is the most

common interaction. The key idea is to

collect examples of humans performing a

task, and then use the examples to train

a computer to perform the task.

Specialized Programming: The second form of

interaction amounts to humans programming the

computer to perform the task. Several interactive

machine learning efforts can be considered

specialized programming languages that enable

users (who may not necessarily know how to

program) to optimize performance.

Figure 5: Two main categories of interaction used in training.

 ̂()

 (()) ()

 (3)

Learning from examples involves finding a function (from a space of functions,) that minimizes a

version of empirical error that provides good performance guarantees.

 ̂ ̂() (4)

Performance guarantees relate the performance of ̂ in Eq. 4 to the (Bayes optimal) performance in

Eq. 2 and help us understand things such as 1) consistency: given infinite samples does the performance

of ̂ converge to the performance of , and 2) sample complexity: how many training samples are

required for ̂ to reach performance within of . When we learn functions using this method, we can

also use them to predict labels on future data, assuming that it is drawn from the same distribution as

the training set.

As a concrete example of how this approach is used in an interactive setting, we turn to image

processing, and the task of labeling pixels. This application is the basis of the Crayons interactive

machine learning system [32] as well as our own Genie image exploitation system [33]. Both of these

systems obtain training examples from users through paintbrush-like tools, and then use supervised

learning methods to develop a pixel classifier that can be applied to the larger image or image archive.

This is illustrated in Fig. 6.

Semi-supervised Learning: Inductive learning methods are also applied in semi-supervised settings, and

the unlabeled data (in addition to the labeled training set) often helps detector performance. In some

interactive settings it is only possible (or convenient) to collect examples from one of the classes. Often

this is the target class, and this variant of semi-supervised learning has been called learning from

positive and unlabeled examples [34, 35]. In other applications, such as anomaly detection, the labeled

class can correspond to data which is known to be uninteresting, or nominal [36, 37].

Figure 6: The paintbrush user-interface is

similar to Fig. 4, but represents a completely

different form of interaction. Previously, the

brush strokes were used as seeds from which

algorithms would grow segments. The number

of brush-strokes was equal to the number of

final segments.

In the figure to the right, the brush strokes in

the lower left are translated into pixel labels.

The number of brush strokes is not important,

just the total number of labeled pixels. The

labels are used to train a pixel labeler, which

can then be applied to a much larger image or

image archive.

Metric Learning: Inductive machine learning methods have also been developed for constrained

clustering. In this case, methods are often called metric learning, which highlights the fact that

constraints are used to optimize a distance measure which can then be used with standard algorithms

(such as K-means) to improve performance on future datasets. Fig. 7 (adapted from [38]) illustrates the

concept. Many extensions of this basic idea have been developed, both parametric [39] and non-

parametric [40]. A Bayesian treatment of the problem incorporates the clustering constraints within a

prior [41]. A method called Bayesian Visual Analytics (BaVA) integrates a projection component for

visualization purposes and implements a drag-and-drop interface for generating soft constraints [42].

Structured Output Prediction: Over the last ten years, training methods for image segmentation have

advanced rapidly in a sub-field of machine learning called structured output prediction. This field (and

others) have extended learning by example from labels (and constraints) to sequences, trees,

segmentations [43-45] and other complex objects [46]. Training structured output predictors proceeds

much like label learning, except the training examples are much more complicated. For example, when

labeling pixels each training example involved a single pixel and its corresponding label. When learning

to segment, each training example involves a complete image and its corresponding segmentation. This

is illustrated in Fig. 8

In general, structured training data is complex and collecting it from users in an interactive setting is

non-trivial. In addition, the structure is typically fixed in advance and only approximates reality, which

means training data is often not intuitive. This has limited the applicability of structured prediction

methods to applications where the training data investment can be justified. For example, the “I2T:

Image-To-Text” research project at UCLA leverages an association with the LOTUS Corporation, where

10 full time employees generate the necessary training data [47]. Researchers are beginning to address

this problem and methods that enable structured training data to be collected from users in more

interactive applications are beginning to appear [48-50]. In [51] the authors developed a HMM based

system for learning sequences of mouse clicks used by humans to delineate shapes in imagery. More

recently, an interactive approach to image-level semantic labeling of images was proposed [52].

Learning to Imitate: As structured prediction grows more ambitious, new connections are being made

to hard problems in robotics [53], where the problem is called imitation learning [54] or behavioral

cloning [55]. Imagine you are trying to program a computer to drive a vehicle. The control problem is

Figure 7: Left) A hypothetical clustering from a

Euclidean distance based method (such as K-

means) produces an initial clustering of the data. A

user identifies equivalence (green) and non-

equivalence (red) constraints. Right) A

parameterized Mahalanobis distance metric

optimized to satisfy the constraints. The modified

distance metric generalizes constraints to other

clusters.

difficult for humans to get right with programming alone. Imitation learning provides a complementary

approach, where humans provide examples by driving the vehicle through remote cameras and

controls. In this case, the examples that they generate are trajectories through a state-space. These

trajectories are used by inverse reinforcement learning methods to optimize cost / reward functions

such that the computer’s trajectories are closer to the examples [56-58]. Imitation learning has

produced a number of general purpose techniques that are starting to be adapted to more interactive

training paradigms for data exploitation tasks [59].

Specialized Programming

The second main form of human-computer interaction during training is programming. Several early

works in interactive machine learning can be considered specialized programming languages that enable

users, who are not programmers, to optimize solutions. More recent work has developed a number of

more general purpose methods for summarizing and visualizing machine learning results so that users

can intuitively steer learning systems to meet application-level objectives.

Graphical languages: A common framework for early efforts in interactive machine learning involves a

scatter plot visualization of data and direct (or indirect) manipulation of decision boundaries. Decision

trees are a popular method for this type of training [60] because they are fairly easy for most users to

understand (a decision is made by applying a number of rules), and they treat high-dimensional datasets

as a series of 1-dimensional features, which means they are relatively easy to visualize. Tools for

designing Bayesian networks have also benefited from these characteristics although the probabilistic

Figure 8: Structured output prediction is a generalization of label learning (𝑦) to a vector output

space, 𝑌 𝐿𝐷 , 𝐿 𝑘 , that encodes complex structures. In label learning, the content detectors are

simple functions: 𝑦 𝑓(𝑥). In structured output prediction, content detectors have the form: 𝑌

𝑎𝑟𝑔𝑚𝑖𝑛𝑌𝐸𝐺(𝑌), where 𝐸𝐺(𝑌) is the energy function defined in Fig. 4. Much like label learning, we introduce

parameters into the graphical model energy function, 𝐸𝐺 𝜃(𝑌), and then uses IID training examples to find

optimal values for these parameters.

rules used in the tree are more difficult to understand [61]. The approach has also been developed for

more complex models such as Hidden Markov Models for bio-informatics applications [62]. The

performance of user-specified models has been shown to be competitive to learning by example in

some applications [63]. However, although these tools are often extremely useful to machine learning

researchers, they generally have not moved outside of the research environment.

Some things are best left to humans: Other forms of specialized programming are very widespread and

have become standard components in many learning by example applications. They typically focus on a

small set of parameters that: 1) are difficult to estimate from examples, and 2) are understandable to

users through intuitive visualization tools. For example, thresholds are difficult to set automatically

because they often depend on prior probabilities that can change from one dataset to the next.

Thresholds are also easy for users to understand and manipulate with sliders, particularly if the impact

of the threshold on the result can be visualized in real-time. This approach is used extensively in labeling

and segmentation applications [64].

When users adjust thresholds in binary classification problems, they are also indicating they prefer one

type of error over another e.g. users care more about false alarms than missed detections. This type of

interaction can be generalized to the multi-class setting by enabling users to interact with the classifier’s

confusion matrix. The EnsembleMatrix method uses the confusion matrix to provide real-time feedback

on performance while users adjust the parameters and structure of an ensemble classifier [65]. The

ManiMatrix approach enables users to directly specify class specific preferences by adjusting weights on

the confusion matrix itself [66].

Feature selection is another critical component in real world applications, and it is often up to the user

to decide which features should be used in the machine learning system. Interactive data visualization

tools can help users make these decisions up-front [67]. Researchers have also developed methods to

incorporate user feedback on feature relevance into the training method [68]. This is motivated by the

observation that labeling features (as relevant or not relevant with respect to a target class) is often

easier for users than labeling examples. A general purpose learning framework, called generalized

expectation, has been used to exploit feature labeling in classification [69] and structured output

prediction settings [70]. Note, that this framework could be categorized equally well as learning by

example with what the authors call weakly labeled data.

Learning from humans programming computers:

In many of the programming techniques we have

described, the user interaction is not learnt or

applied to future datasets. The final program can be

applied to new data, but the programming itself is

specialized. But there are situations where the

programming can become examples for a meta-

learning system. For example, a user may apply a

pixel classifier to a number of images and adjust the final threshold each time, and there may be

relationships between the image content and the threshold that could be exploited. This type of

approach has been used to automate user interactions observed with the EnsembleMatrix method [71].

For the programmers: Domain specific languages for machine learning continue to be developed as

machine learning components mature and machine learning applications grow. In almost every

language, developers are realizing that machine learning provides key functionality that must be

supported This includes open source languages, such as Haskell [72] , as well as commercial languages,

such as .NET [73]. Although these languages are too specialized to be used by end-users today, they will

be a key technology for building (and scaling up) the interactive learning systems of the future.

Part III - The Training Dialog

So far, we have discussed common task decompositions and outlined the growing vocabulary that

humans and computers use during training. In this section we describe the different interactive dialogs

that can emerge between humans and computers during training.

The Monologue

The standard (or default) formulation of the training interaction is batch learning where all training

examples are provided up front. The examples could be labels, pairwise constraints, sequences, or any

of the complex structures described in Part II. In all cases, examples are assumed to be drawn

independently from the same underlying distribution (IID: Independent and Identically Distributed).

Training methods take these examples and typically solve convex optimization problems to find models

with low probability of error. A large body of theoretical work provides performance bounds for this

problem setting [13, 74].

The dialog between end-users and computers during batch learning is very simple: 1) The user generates

examples using a data browser with annotation tools, and 2) the computer ingests these examples into

the learning algorithm.

One Word at a Time

A different formulation of training provides examples to the computer incrementally: one sample at a

time, or more generally, a subset at a time. This is called online learning and the approach has significant

computational advantages when there are a large number of examples. Theoretical developments show

that online learning methods can obtain performance bounds within () of batch methods [75-77].

Practical developments have produced some of the fastest and most scalable learning methods for

support vector machines [78] and structured output prediction [79].

Most work on online learning assumes that although examples are introduced sequentially, they are still

IID. Recent work has started to relax this assumption [80] and this will help guide method development

for interactive learning systems where users monitor and provide periodic examples of data with

temporal dependencies such as time-series data feeds.

Long-term learning: Although not directly related to online learning methods, incremental learning

strategies are also important to a long-term interactive dialog. Computers are becoming increasingly

pervasive, and user interaction has rapidly changed from single person interactions over short periods of

time with no history, to persistent multi-person interactions over long periods of time.

It will take some time for unified theories of training at multiple scales to emerge, but researchers are

beginning to prototype frameworks [81], and practical applications are already being deployed. A

general approach in these long-term learning systems is to manually partition the accumulated

examples into sets appropriate to the application. For example in content based search, examples have

been integrated through separate short-term and long-term components [82]. In a commercial email

application examples are integrated through separate individual and group preference components [83].

A Conversation

When examples are provided incrementally to a learning system it opens the door to more interactive

learning paradigms where there are dependencies between the model learnt at time , and the training

examples provided by the user at time . These dependencies take a number of different forms

depending on the interactive setting, and in this section we discuss some of them.

Relevance Feedback: When computers are used as content filters or detectors (as described in Part I)

users can often provide feedback (e.g. labels) for predicted results. This concept is used extensively in

content based search applications, such as image retrieval, where it is called relevance feedback [84]. In

this setting, the typical dialog is:

1. Start with a small number of examples and build a content detector.

2. Apply content detector to unlabeled data and present most relevant samples.

3. User provides labels for samples indicating they are relevant (or not).

4. Update content detector based on the new labels.

5. Goto 2

Relevance feedback has traditionally been motivated by search in semi-structured data, and includes

techniques such as query expansion, where text queries are expanded to include things like synonyms

and spelling mistakes [85]. Machine learning methods have also been developed, but are often

presented in the context of specific applications such as document retrieval [86]. More recently, general

purpose machine learning methods and analysis techniques are being incorporated into relevance

feedback methods [87]. A fundamental problem in relevance feedback, and interactive dialogs in

general, is sampling bias. The samples that the user labels in step 3 are not selected randomly, but the

methods used in step 4 assume they are. This means there are no guarantees that query (or detector)

performance will get better as more labels are obtained, and in fact, it may get worse. Fig. 9 provides a

simple illustration of the sampling bias issues.

Active Learning: Active learning uses a different strategy for selecting examples. It focuses on

minimizing the number of labels required to obtain a given level of performance (the sample

complexity). Note, that with respect to the end-users application, these strategies may well select the

most uninteresting samples in the data set. In some sense, active learning is a training strategy for non-

interactive settings: once a user has done the minimal amount of work to build an accurate detector,

they can then make productive use of the detector in the application.

A long-standing challenge for machine learning theory has been to develop active learning strategies

that perform as well as batch learning, but with fewer samples. Mitigating sampling bias has been a key

topic, and a number of methods have been developed that provide safety guarantees and batch learning

performance in the worst case [88]. New analysis frameworks have also been required, and new

parameters have been developed for active learning performance bounds that enable sample

complexity to be quantified and understood [89, 90].

Rare Category Detection: Interactive exploration of large datasets has motivated a large number of

iterative learning techniques based on anomaly and rare category detection. The dialog follows a similar

format to relevance feedback, but often starts with no examples, and unsupervised detectors in step 1.

A number of different strategies for selecting which samples to label have been proposed. Often these

strategies include a combination of the most anomalous samples (a relevance feedback strategy), as

well as the most ambiguous samples (an active learning strategy) [91, 92]. This mixed strategy arises

from the fact that there is often a tradeoff between exploration and exploitation in discovery type tasks.

We would like to bring important data to the users attention as quickly as possible but we are unsure

Sampling Bias: Two examples, adapted from [88], where data is uniformly distributed in clusters on

a line. White blocks contain data with label +1 (i.e. relevant). Black blocks contain data with label -1.

Gray blocks contain a 50% mixture of +1 and -1 labels. Content detectors include the space of

threshold functions (data to the right of the threshold is predicted +1). These examples show how

common sampling strategies for relevance feedback (left) and active learning (right) converge to

classifiers with higher error than the detector found through IID sampling (𝑓).

Initial samples will (typically) come from the

large mixture and the initial detector will be𝑓.

In the relevance feedback setting, users are

shown the most relevant samples, which are

the samples furthest right. Labels for these

samples are a mixture of +1,-1 and so the

detector does not move.

Again, the initial sample would (typically) place

the initial detector at𝑓. In the active learning

setting, the user is shown data that is closest

to the decision boundary. Labels for these

samples are a mixture of +1,-1 and so the

detector does not move.

Figure 9: Understanding and mitigating sampling bias is an important first step in developing

interactive training dialogs such as relevance feedback and active learning.

exactly what data is important. Rare category detection has mainly focused on the category discovery

problem, and this is a form of exploration. However once categories are discovered, it can be useful to

improve the accuracy of detectors for these known categories. This enables users to find more examples

of known categories (exploitation tasks such as rare category characterization [12]). But also, if we have

a better idea of what we know, it may help us identify what we don’t know. This means that even

though active learning strategies do not show users what they want to see in the short term, they can

lead to detectors that discover more categories with less samples in the long term. A decision theory

framework that balances the active learning and rare category objectives was recently proposed [93].

User Bias: So far we have focused on situations where the computer determines which examples to

label next based on the previous result. An alternative is for the user to choose which samples to label

next. This means that users must be able to visualize (or browse) a larger subset of data and predicted

results to make their selections. Empowering users to select the samples can be advantageous since

users often know the most important aspects of the problem. In addition, users can sometimes learn the

strengths and weaknesses of a learning system through interaction, and then choose examples which

guide the system towards better solutions. An example of this phenomenon is shown in Fig. 10. A

number of other interactive search applications have been developed that support and benefit from this

type of interaction [94]. Theory for how to formally incorporate this type of bias into learning systems is

yet to be developed.

Future Directions

Interactive machine learning has an exciting future with many open research questions and many

opportunities in science and engineering. One area where we expect to see particular progress is in the

generality (and pervasiveness) of interactive learning systems. Currently, most interactive learning

systems are specialized tools that expect a specific form of interaction and are used in specific parts of

the application. But in most applications, users are engaged in a much larger conversation that involves

multiple tools and activities such as data preparation and post-processing. In Part II we described the

growing vocabulary that has emerged in machine learning and we suggest this will fuel the development

Figure 10: The task (shown in the lower right) is to delineate the airplanes visible on a runway in a ten band

multi-spectral image. The red dashed line at 0.07 (upper right) is the performance of Fisher’s linear

discriminant with IID samples – the classifier has low variance and high bias. In the top left, a user provides a

small (biased) subset of labels. The discriminant result (T=1) has an error of 0.2 (red marker). The user

inspects the predicted result, provides additional examples, and the discriminant is re-optimized. This process

iterates. At the end of the 9
th

 iteration, the user has labeled the data shown in the bottom left and the

discriminant result (T=9) has an error close to 0.02. The user performs the experiment 4 times, starting at

different parts of the image each time. The average of the 4 experiments is shown in black with error bars and

consistently outperforms the discriminant trained with IID samples (green marker).

of more general interactive systems. In Fig. 11 we show a typical image analysis workflow used in

material science that already uses the entire vocabulary described in Part II.

One of the greatest challenges for interactive machine learning will be the consistent and efficient

exploitation of the complex conversation that occurs in workflows like Fig. 11. It is the interaction, more

than the vocabulary, that often contains the invaluable domain knowledge that humans possess and

machine learning needs [95]. Users are very good at finding ways to use a small set of (often

inadequate) tools to reach their objectives, and machine learning can use this to advantage. For

example, the final product in Fig. 11 could be used as training data in a structured output prediction

system. However this is an extremely complex problem and it is unlikely that existing methods would

solve this problem with any reasonable level of accuracy without extensive hand tuning (even if there

were large numbers of these examples available). However, it may well be that the sequence of user

interactions can provide interactive learning systems with a road-map to efficient solutions.

As part of dealing with unstructured dialogs, interactive machine learning must identify and partition

recurring patterns of interaction as examples. Current interactive systems require that the sequence of

interactions be manually partitioned into relevant subsets. For example, we could post-process the

workflow in Fig. 11 to extract all the merge examples, and then develop tools that predict additional

merge candidates [96, 97]. This approach provides a starting point but it ignores temporal dependencies

that may provide important clues into the structure of the problem e.g. users may often split and merge

segments in sequence, and / or, the user may be using different merging strategies at different points in

time.

Figure 11: A typical

workflow used by

material scientists to

characterize microscopy

images of particles.

Starting with the original

image (top- left), a user

interacts with data (e.g. labeling) and algorithms (e.g.

setting thresholds) to produce the final data product

(bottom-right). The workflow varies depending on

the image content, and the research objectives, but it

is time-consuming and expensive for experts to

repeat on all the data collected in an experiment.

Another part of dealing with an unstructured dialog is knowing when to automate, and when to engage

users. In Part I we described binary task decompositions in which both humans and computers played

roles. In Part III we described dialogs in which some of these task decompositions evolve over time as

the computer learns to automate, or as humans program new components. We also saw that learning

can be applied at multiple levels, and sometimes user interactions are automated and sometimes they

are not. A great promise of interactive machine learning is automated task decomposition where the

dialog evolves over time and leads to optimized task decompositions for the problem and the resources

at hand. It is interesting to note that in other areas of computer science, technologies such as crowd-

sourcing are enabling humans to be cost effective in tasks that are traditionally performed by machines

[98]. Different groups of humans (and machines) have different skills, and different costs, and this will

be an important factor in how tasks are decomposed.

Finally, as humans and machines become more tightly integrated in machine learning, human factors

related to user bias and attention come into play [99]. This topic also appears in the context of

exploiting crowd-sourced data products and methods to mitigate noise and other issues are an active

topic of research [100]. Human factors may well become even more important as interactive machine

learning expands the vocabulary and flexibility that users have. As we saw in Part III, user bias can help

steer simple classifiers to better solutions, and in fact, bias is critical to interactive machine learning

reaching its full potential. Theory for formalizing the positive impacts of bias (domain expertise), as well

as methods to mitigate the negative impact of bias (human factors), are in their infancy. In practice, we

have yet to see if humans and computers can learn to trust each other in critical applications.

Bibliography

1. Cour, T., et al. Learning from ambiguously labeled images. in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. 2009.

2. Cannon, A., et al., Learning with the Neyman-Pearson and min-max criteria, 2002, Los Alamos
National Laboratory

3. Steinwart, I., D. Hush, and C. Scovel, A classification framework for anomaly detection. Journal of
Machine Learning Research, 2005. 6: p. 211-232.

4. Theiler, J. and D.M. Cai. Resampling Approach for Anomaly Detection in Multispectral Images. in
Proc. SPIE. 2003.

5. Abe, N., B. Zadrozny, and J. Langford, Outlier detection by active learning, in Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining2006, ACM:
Philadelphia, PA, USA. p. 504-509.

6. Theiler, J., Quantitative comparison of quadratic covariance-based anomalous change detectors.
Applied Optics 2008. 47: p. F12-F26.

7. Fine, S. and Y. Mansour, Active sampling for multiple output identification. Machine Learning,
2007. 69(2-3): p. 213-228.

8. He, J. and J. Carbonell, Nearest-Neighbor-Based Active Learning for Rare Category Detection, in
NIPS: Neural Information Processing Systems2007: Vancouver, B.C., Canada

9. Huang, H., et al., RADAR: Rare Category Detection via Computation of Boundary Degree, in
Advances in Knowledge Discovery and Data Mining, J. Huang, L. Cao, and J. Srivastava, Editors.
2011, Springer Berlin Heidelberg. p. 258-269.

10. Vatturi, P. and W.-K. Wong, Category detection using hierarchical mean shift, in Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data mining2009,
ACM: Paris, France. p. 847-856.

11. Porter, R., et al., Toward Interactive Search in Remote Sensing Imagery, in SPIE Defense Security
and Sensing2010: Orlando, FL.

12. He, J., H. Tong, and J. Carbonell, An effective framework for characterizing rare categories.
Frontiers of Computer Science, 2012. 6(2): p. 154-165.

13. Vapnik, V.N., Statistical learning theory, ed. Wiley1998, New York.
14. Chapelle, O., B. Schölkopf, and A. Zien, A Discussion of Semi-Supervised Learning and

Transduction, in Semi-Supervised Learning, O. Chapelle, B. Schölkopf, and A. Zien, Editors. 2006,
MIT Press.

15. Zhou, D., et al. Learning with local and global consistency. in Advances in Neural Information
Processing Systems 16. 2004.

16. Thomas, J.J. and K.A. Cook, Illuminating the Path: The Research and Development Agenda for
Visual Analytics, 2005, IEEE.

17. Cutting, D.R., et al., Scatter/Gather: a cluster-based approach to browsing large document
collections, in Proceedings of the 15th annual international ACM SIGIR conference on Research
and development in information retrieval1992, ACM: Copenhagen, Denmark. p. 318-329.

18. Basu, S., I. Davidson, and K.L. Wagstaff, eds. Constrained Clustering: Advances in Algrotihms,
Theory and Applications. Data Mining and Knowledge Discovery Series, ed. V. Kumar2009,
Chapman & Hall / CRC.

19. desJardins, M., J. MacGlashan, and J. Ferraioli, Interactive Visual Clustering for Relational Data,
in Constrained Clustering: Advances in Algorithms, Theory, and Applications, S. Basu, I. Davidson,
and K.L. Wagstaff, Editors. 2009, Chapman & Hall / CRC. p. 329-356.

20. Wagstaff, K., et al., Constrained K-means Clustering with Background Knowledge, in Proceedings
of the Eighteenth International Conference on Machine Learning2001, Morgan Kaufmann
Publishers Inc. p. 577-584.

21. Hahn, H.K. and H.-O. Peitgen. IWT - Interactive Watershed Transform: A hierarchical method for
efficient interactive and automated segmentation of multidimensional grayscale images. in Proc.
of SPIE 2003.

22. Jain, V., H.S. Seung, and S.C. Turaga, Machines that learn to segment images: a crucial
technology for connectomics. Current Opinion in Neurobiology, 2010. 20: p. 1-14.

23. Wienert, S., et al., Detection and Segmentation of Cell Nuclei in Virtual Microscopy Images: A
Minimum-Model Approach. Sci. Rep., 2012. 2.

24. Wang, S., J. Waggoner, and J. Simmons, Graph-cut methods for grain boundary segmentation.
JOM, 2011. 63(7): p. 49-51.

25. Duchenne, O., et al. Segmentation by transduction. in Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on. 2008.

26. Boykov, Y. and M.-P. Jolly. Interactive Graph Cuts for Optimal Boundary & Region Segmentation
of Objects in N-D images. . in International Conference on Computer Vision. 2001.

27. Grady, L., Random Walks for Image Segmentation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 2006. 28(11): p. 1768-1783.

28. Vincent, L. and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion
simulations. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1991. 13(6): p.
583-598.

29. Xue, B. and G. Sapiro. A Geodesic Framework for Fast Interactive Image and Video Segmentation
and Matting. in Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. 2007.

30. Couprie, C., et al., Power Watershed: A Unifying Graph-Based Optimization Framework. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 2011. 33(7): p. 1384-1399.

31. McGuinness, K. and N.E. O'Connor, Toward automated evaluation of interactive segmentation.
Comput. Vis. Image Underst., 2011. 115(6): p. 868-884.

32. Fails, J.A. and J. Dan R. Olsen. Interactive Machine Learning. in Intelligent User Interfaces, IUI '03.
2003. ACM.

33. Perkins, S., et al., GENIE - A Hybrid Genetic Algorithm for Feature Classification in Multi-Spectral
Images, in Proc. SPIE 4120 2000. p. 52-62.

34. Elkan, C. and K. Noto, Learning classifiers from only positive and unlabeled data, in Proceedings
of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining2008,
ACM: Las Vegas, Nevada, USA. p. 213-220.

35. Hush, D.R. and R.B. Porter. Density-based similarity measures for content based search. in
Asilomar Conference on Signals, Systems and Computers 2009. Pacific Grove, CA: IEEE.

36. Thompson, D.R., et al., Semi-Supervised Eigenbasis Novelty Detection. Statistical Analysis and
Data Mining, 2012: p. n/a-n/a.

37. Blanchard, G., G. Lee, and C. Scott, Semi-Supervised Novelty Detection. Journal of Machine
Learning Research, 2010. 11: p. 2973-3009.

38. Cohn, D., R. Caruana, and A. McCallum, Semi-supervised Clustering with User Feedback, 2003,
Cornell University.

39. Xiang, S., F. Nie, and C. Zhang, Learning a Mahalanobis distance metric for data clustering and
classification. Pattern Recognition, 2008. 41(12): p. 3600-3612.

40. Hertz, T., A. Bar-Hillel, and D. Weinshall, Boosting margin based distance functions for clustering,
in Proceedings of the twenty-first international conference on Machine learning2004, ACM:
Banff, Alberta, Canada. p. 50.

41. Lu, Z. and T.K. Leen, Pairwise Constraints as Priors in Probabilistic Clustering, in Constrained
Clustering: Advances in Algorithms, Theory, and Applications, S. Basu, I. Davidson, and K.L.
Wagstaff, Editors. 2009, Chapman & Hall / CRC.

42. House, L., S. Leman, and C. Han, Bayesian Visual Analytics: BaVA, in FODAVA Technical
Report2010.

43. Lafferty, J.D., A. McCallum, and F.C.N. Pereira, Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data, in Proceedings of the Eighteenth International
Conference on Machine Learning2001, Morgan Kaufmann Publishers Inc. p. 282-289.

44. Taskar, B., Learning Structured Prediction Models: A Large Margin Approach, 2004, Stanford
University.

45. Tsochantaridis, I., et al., Large Margin Methods for Structured and Interdependent Output
Variables. J. Mach. Learn. Res., 2005. 6: p. 1453-1484.

46. Vembu, S., Learning to predict combinatorial structures, 2010, University of Bonn.
47. Yao, B.Z., et al., I2T: Image Parsing to Text Description. Proceedings of the IEEE, 2010. 98(8): p.

1485-1508.
48. Schwing, A.G., et al. Efficient Structured Prediction with Latent Variables for General Graphical

Models. in Int.'l Conf. on Machine Learning (ICML). 2012.
49. Huynh, T.N. and R.J. Mooney. Online Structure Learning for Markov Logic Networks. in

Proceedings of the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD 2011). 2011.

50. Getoor, L. and C.P. Diehl, Link mining: a survey. SIGKDD Explor. Newsl., 2005. 7(2): p. 3-12.
51. Caelli, T., A. McCabe, and G. Briscoe, Shape tracking and production using hidden Markov

models, in Hidden Markov models: applications in computer vision2002, World Scientific
Publishing Co., Inc. p. 197-221.

52. Zankl, G., Y. Haxhimusa, and A. Ion, Interactive Labeling of Image Segmentation Hierarchies, in
Pattern Recognition, A. Pinz, et al., Editors. 2012, Springer Berlin Heidelberg. p. 11-20.

53. Daum\, H., et al., Search-based structured prediction. Mach. Learn., 2009. 75(3): p. 297-325.
54. Schaal, S., Is imitation learning the route to humanoid robots? Trends in cognitive sciences,

1999. 3(6): p. 233-242.
55. Bain, M. and C. Sammut, A Framework for Behavioural Cloning, in Machine Intelligence 15,

Intelligent Agents [St. Catherine's College, Oxford, July 1995]1999, Oxford University. p. 103-129.
56. Maes, F., L. Denoyer, and P. Gallinari, Structured prediction with reinforcement learning. Mach.

Learn., 2009. 77(2-3): p. 271-301.
57. Ross, S., G.J. Gordon, and J.A. Bagnell, No-Regret Reductions for Imitation Learning and

Structured Prediction. CoRR, 2010. abs/1011.0686.
58. Ratliff, N., D. Silver, and J.A. Bagnell, Learning to search: Functional gradient techniques for

imitation learning. Autonomous Robots, 2009. 27(1): p. 25-53.
59. He, H., H.D. III, and J. Eisner. Imitation Learning by Coaching. in Neural Information Processing

Systems (NIPS). 2012.
60. Ankerst, M., et al., Visual classification: an interactive approach to decision tree construction, in

Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data
mining1999, ACM: San Diego, California, United States. p. 392-396.

61. ucar and art nez-Arroyo, Interactive structural learning of Bayesian networks. Expert
Systems with Applications, 1998. 15(3–4): p. 325-332.

62. Dai, J. and J. Cheng, HMMEditor: a visual editing tool for profile hidden Markov model. BMC
Genomics. , 2008

63. Ware, M., et al., Interactive machine learning: letting users build classifiers. Int. J. Hum.-Comput.
Stud., 2002. 56(3): p. 281-292.

64. Mangan, A.P. and R.T. Whitaker, Partitioning 3D surface meshes using watershed segmentation.
Visualization and Computer Graphics, IEEE Transactions on, 1999. 5(4): p. 308-321.

65. Talbot, J., et al., EnsembleMatrix: interactive visualization to support machine learning with
multiple classifiers, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems2009, ACM: Boston, MA, USA. p. 1283-1292.

66. Kapoor, A., et al., Interactive optimization for steering machine classification, in Proceedings of
the 28th international conference on Human factors in computing systems2010, ACM: Atlanta,
Georgia, USA. p. 1343-1352.

67. Dy, J.G. and C.E. Brodley. Visualization and Interactive Feature Selection for Unsupervised Data.
in In Proceedings of the International Conference on Knowledge Discovery and Data Mining
(KDD). 2000.

68. Raghavan, H., O. Madani, and R. Jones, InterActive feature selection, in Proceedings of the 19th
international joint conference on Artificial intelligence2005, Morgan Kaufmann Publishers Inc.:
Edinburgh, Scotland. p. 841-846.

69. Druck, G., G. Mann, and A. McCallum, Learning from labeled features using generalized
expectation criteria, in Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval2008, ACM: Singapore, Singapore. p. 595-602.

70. Druck, G., B. Settles, and A. McCallum, Active learning by labeling features, in Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 - Volume
12009, Association for Computational Linguistics: Singapore. p. 81-90.

71. Kapoor, A., et al. Learning to Learn: Algorithmic Inspirations from Human Problem Solving. in
AAAI 2012. 2012. . Toronto.

72. Erwig, M. and S. Kollmansberger, Probabilistic Functional Programming in Haskell. Journal of
Functional Programming, 2006. 16(1): p. 21-34.

73. Research, M. Infer.NET. 2012; Available from: http://research.microsoft.com/en-
us/um/cambridge/projects/infernet/.

74. Bartlett, P., The sample complexity of pattern classification with neural networks. IEEE Trans.
Inform. Theory, 1998. 44: p. 525–536.

75. Cesa-bianchi, N., A. Conconi, and C. Gentile, On the Generalization Ability of On-Line Learning
Algorithms. IEEE Transactions on Information Theory, 2004. 50: p. 2050–2057.

76. Hazan, E., A. Agarwal, and S. Kale, Logarithmic regret algorithms for online convex optimization.
Mach. Learn., 2007. 69(2-3): p. 169-192.

77. Kakade, S.M. and A. Tewari. On the Generalization Ability of Online Strongly Convex
Programming Algorithms. in NIPS'08. 2008.

78. Shalev-Shwartz, S., Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-GrAdient SOlver for
SVM. in In Proceedings of the Twenty-Fourth International Conference on Machine Learning
(ICML). 2007.

79. Ratliff, N., J.D. Bagnell, and M. Zinkevich. (Online) Subgradient Methods for Structured
Prediction. in In Eleventh International Conference on Artificial Intelligence and Statistics
(AIStats). 2007.

80. Agarwal, A. and J. Duchi, The Generalization Ability of Online Algorithms for Dependent Data. To
appear in IEEE Transactions on Information Theory (2012). 2011.

81. Carlson, A., et al. Toward an Architecture for Never-Ending Language Learning. in In Proceedings
of the Conference on Artificial Intelligence (AAAI). 2010.

82. Xiaofei, H., et al., Learning a semantic space from user's relevance feedback for image retrieval.
Circuits and Systems for Video Technology, IEEE Transactions on, 2003. 13(1): p. 39-48.

83. Aberdeen, D., O. Pacovsky, and A. Slater. The learning behind gmail priority inbox. in NIPS 2010
Workshop on Learning on Cores, Clusters and Clouds. 2010.

84. Rui, Y., et al., Relevance feedback: a power tool for interactive content-based image retrieval.
Circuits and Systems for Video Technology, IEEE Transactions on, 1998. 8(5): p. 644-655.

85. Efthimiadis, E.N., Query expansion. Annual Review of Information Systems and Technology,
1996. 31.

86. Rocchio, J., Relevance feedback in information retrieval, in The smart retrieval system—
Experiments in automatic document processing, G. Salton, Editor 1971, Prentice-Hall. p. 313–
323.

87. Chen, Z. and B. Fu, On the complexity of Rocchio's similarity-based relevance feedback algorithm.
J. Am. Soc. Inf. Sci. Technol., 2007. 58(10): p. 1392-1400.

88. Dasgupta, S. and D.J. Hsu. Hierarchical Sampling for Active Learning. in Twenty-Fifth
International Conference on Machine Learning (ICML). 2008.

89. Hanneke, S., A bound on the label complexity of agnostic active learning, in Proceedings of the
24th international conference on Machine learning2007, ACM: Corvalis, Oregon. p. 353-360.

90. Beygelzimer, A., S. Dasgupta, and J. Langford, Importance weighted active learning, in
Proceedings of the 26th Annual International Conference on Machine Learning2009, ACM:
Montreal, Quebec, Canada. p. 49-56.

91. Pelleg, D. and A. Moore, Active Learning for Anomaly and Rare-Category Detection, in Proc. 18th
Annual Conference on Neural Information Processing Systems2004.

92. Stokes, J.W., et al., ALADIN: Active Learning of Anomalies to Detect Intrusions, 2008, Microsoft
Research, MSR-TR-2008-24.

93. Hospedales, T., S. Gong, and T. Xiang, A Unifying Theory of Active Discovery and Learning, in
Computer Vision – ECCV 2012, A. Fitzgibbon, et al., Editors. 2012, Springer Berlin Heidelberg. p.
453-466.

http://research.microsoft.com/en-us/um/cambridge/projects/infernet/
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/

94. Zavesky, E. and S.-F. Chang, CuZero: embracing the frontier of interactive visual search for
informed users, in Proceeding of the 1st ACM international conference on Multimedia
information retrieval2008, ACM: Vancouver, British Columbia, Canada. p. 237-244.

95. Pike, W.A., et al., The science of interaction. Inf Visualization, 2009. 8(4): p. 263-274.
96. Porter, R. and C. Ruggiero. Interactive Image Quantification Tools for Nuclear Material

Foreinsics. in Proceedings of SPIE. 2011. San Francisco.
97. Jain, V., et al. Learning to Agglomerate Superpixel Hierarchies. in Proceedings of Neural

Information Processing Systems. 2011.
98. Davis, J., et al. The HPU (Human Processing Unit). in IEEE CVPR Workshop on Advancing

Computer Vision with Humans in the Loop. 2010.
99. Kobsa, A., 10 Year Anniversary Issue. User Modeling and User-Adapted Interaction 2001. 11(1).
100. Tamuz, O., et al. Adaptively Learning the Crowd Kernel. in International Conference on Machine

Learning. 2011.

